The German Energiewende
German Renewable Energy Policy

Markus Kurdziel
Programme Office
International Climate Initiative (BMU)
Overview

- Drivers and Targets of Germany’s Energy Policy
- German RE Policies
- Recent Development of PV in Germany
- Integrating RE into the Energy System
- Perspectives on the EEG Surcharge
- Impacts and Perspectives
2.10. EU-27 Development of Import Dependence up to 2030 (Baseline Scenario)

Source: European Commission DG TREN, PRIMES
Top 5 Countries for Renewable Energy Investment, 2011:

1. China (52 bn $)
2. USA (51 bn $)
3. Germany (31 bn $)
4. Italy (29 bn $)
5. India (12 bn $)

Source: REN21, GSR 2012
Driver: Climate Protection

The graph shows the difference in global temperatures from 1860 to 2000, with a focus on recent decades. The data indicates a steady increase in temperature, with different lines representing different periods. The rate of increase is also indicated, showing a faster rise in recent years.
The three pillars of the German Energy Transition

- **Renewable Energies**
 - Increasing investment in RE
 - Grid integration of RE

- **Grid expansion**
 - Additional transmission capacity
 - Balancing demand and supply between regions
 - Increasing storage capabilities

- **Energy efficiency**
 - Decreasing energy consumption
 - Demand Side Management / Smart Grids
The Energy Transition: Targets

<table>
<thead>
<tr>
<th>Climate</th>
<th>Renewable energies</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse gases (vs. 1990)</td>
<td>Share of elec.</td>
<td>Overall share</td>
</tr>
<tr>
<td>2020</td>
<td>- 40%</td>
<td>35%</td>
</tr>
<tr>
<td>2030</td>
<td>- 55%</td>
<td>50%</td>
</tr>
<tr>
<td>2040</td>
<td>- 70%</td>
<td>65%</td>
</tr>
<tr>
<td>2050</td>
<td>- 80-95%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Climate
- **Greenhouse gases (vs. 1990):** Reduce emissions by 40% by 2020, 55% by 2030, 70% by 2040, and aim for 80-95% by 2050.

Renewable energies
- **Share of elec.:** Increase to 35% by 2020, 50% by 2030, 65% by 2040, and 80% by 2050.
- **Overall share:** Increase to 18% by 2020, 30% by 2030, 45% by 2040, and 60% by 2050.

Efficiency
- **Primary energy cons.:** Decrease to -20% by 2020.
- **Energy productivity:** Increase to 2.1%/a by 2050.
- **Building modernization:** Double from 1% to 2% by 2050.
Share of Renewable Energy in Electricity Generation in Germany (2011)

Brutto-Stromerzeugung nach Energieträgern 2011

Brutto-Stromerzeugung 2011 in Deutschland: 612 Mrd. Kilowattstunden*

- Erdgas: 14%
- Steinkohle: 19%
- Erneuerbare: 20%
- Kernenergie: 18%
- Braunkohle: 25%
- Heizöl, Pumpspeicher und Sonstige: 5%

- Wind: 8%
- Biomasse: 5%
- Wasser: 3%
- Photovoltaik: 3%
- Siedlungsabfälle: 1%

Quellen: BDEW, AG Energiebilanzen
Stand: 14. Dezember 2011

* vorläufig
Renewable energy sources and their share of the energy supply in Germany

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of RES in total gross electricity consumption</td>
<td>7.8</td>
<td>4.3</td>
<td>14.0</td>
<td>11.0</td>
<td>10.0</td>
<td>18.0</td>
<td>18.0</td>
<td>18.0</td>
<td>minimum 35.0</td>
</tr>
<tr>
<td>Share of RES in total energy consumption for heat</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of RES in fuel consumption for road traffic in transport sector (2)</td>
<td>0.9</td>
<td>5.5</td>
<td>4.5</td>
<td>4.5</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of RES in total final energy consumption (electricity, heat, fuels)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of RES in total primary energy consumption (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Sources: Targets of the German Government, Renewable Energy Sources Act (EEG); Renewable Energy Sources Heat Act (EEWärmeG), EU-Directive 2009/28/EC; 2) Total consumption of engine fuels, excluding fuel in air traffic; 3) Calculated using efficiency method; source: Working Group on Energy Balances e.V. (AGEB); RES: Renewable Energy Sources;

Source: BMU-KI III 1 according to Working Group on Renewable Energy-Statistics (AGEE-Stat); image: BMU / Brigitte Hiss; as at: July 2012; all figures provisional.
Drivers and Targets of Germany’s Energy Policy
German RE Policies
Recent Development of PV in Germany
Integrating RE into the Energy System
Perspectives on the EEG Surcharge
Impacts and Perspectives
Cornerstones of the Renewable Energy Sources Act

- Guaranteed grid access for RE; priority transmission and distribution

- Fixed price ("tariff") for every kWh produced for 20 years.

 Tariffs are set technology-specific and specific with regard to further provisions (e.g. site, system services, ...)

- Annual degression of the tariffs

- Equalization of additional costs for electricity from RE between all grid operators and electricity suppliers (2011: ~ 3,5 ct/kWh); independence from public budget.

- Regular monitoring & evaluation; accompanying research.
German RE Policies - Electricity

Development of electricity generation from renewable energy sources in Germany since 1990

- **Hydropower**
- **Wind energy**
- **Biomass** *
- **Photovoltaics**

* Solid and liquid biomass, biogas, sewage and landfill gas, biogenic share of waste; electricity from geothermal energy not presented due to negligible quantities produced; 1 GWh = 1 Mill. kWh;

source: BMU-KI III 1 according to Working Group on Renewable Energy-Statistics (AGEE-Stat); image: BMU / Christoph Edelhoff; as at: March 2012; all figures provisional

GWh

EEG: January 2009
EEG: April 2000
EEG: August 2004
Amendment to BauGB: November 1997
Drivers and Targets of Germany’s Energy Policy
German RE Policies
Recent Development of PV in Germany
Integrating RE into the Energy System
Perspectives on the EEG Surcharge
Impacts and Perspectives
Price development of PV Modules

October 2012

Legend:
- **Kristallin**
- **Dünnsschicht**
- Source PVexchange

- Deutschland
- China
- Japan

- CdS/CdTe
- a-Si
- a-Si/μ-Si

Price development graph for PV Modules showing trends from January 2010 to January 2012.
Photovoltaics in Germany - Development & EEG adjustments

Installed capacity and energy supply from photovoltaic installations in Germany

<table>
<thead>
<tr>
<th>Year</th>
<th>Electricity supply [GWh]</th>
<th>Installed capacity [MWp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2,000</td>
<td>19,000</td>
</tr>
<tr>
<td>2001</td>
<td>4,000</td>
<td>11,683</td>
</tr>
<tr>
<td>2002</td>
<td>6,000</td>
<td>6,583</td>
</tr>
<tr>
<td>2003</td>
<td>8,000</td>
<td>4,420</td>
</tr>
<tr>
<td>2004</td>
<td>10,000</td>
<td>3,075</td>
</tr>
<tr>
<td>2005</td>
<td>12,000</td>
<td>2,220</td>
</tr>
<tr>
<td>2006</td>
<td>14,000</td>
<td>1,282</td>
</tr>
<tr>
<td>2007</td>
<td>16,000</td>
<td>556</td>
</tr>
<tr>
<td>2008</td>
<td>18,000</td>
<td>313</td>
</tr>
<tr>
<td>2009</td>
<td>20,000</td>
<td>162</td>
</tr>
<tr>
<td>2010</td>
<td>22,000</td>
<td>76</td>
</tr>
<tr>
<td>2011</td>
<td>24,000</td>
<td>64</td>
</tr>
<tr>
<td>2012</td>
<td>26,000</td>
<td>42</td>
</tr>
</tbody>
</table>

Source: BMU-KI III 1 according to Working Group on Renewable Energy-Statistics (AGEE-Stat); 1 GWh = 1 Mill. kWh; 1 MW = 1 Mill. Watt; image: BMU / Bernd Müller; as at: March 2012; all figures provisional
<table>
<thead>
<tr>
<th>start of operation</th>
<th>Installed Capacity Roof-Top</th>
<th>Free-Field-Installations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>up to 30 kW</td>
<td>up to 100 kW</td>
</tr>
<tr>
<td>as of 1.1.2012</td>
<td>24,43</td>
<td>23,23</td>
</tr>
<tr>
<td></td>
<td>not applicable</td>
<td>up to 1.000 kW</td>
</tr>
<tr>
<td>as of 1.4.2012</td>
<td>19,50 (<10kW)</td>
<td>18,50 (< 40kW)</td>
</tr>
<tr>
<td>New! Market integration model</td>
<td>tariffs paid for x% of annual production</td>
<td></td>
</tr>
</tbody>
</table>
EEG 2012 – PV degression

- Overall cap of 52 GW
 Solar PV: Expiration of EEG PV support
 But: continuation of priority feed-in

<table>
<thead>
<tr>
<th>Year</th>
<th>Corridor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>2500-3500</td>
</tr>
<tr>
<td>2013</td>
<td>2500-3500</td>
</tr>
<tr>
<td>2014</td>
<td>2100-3100</td>
</tr>
<tr>
<td>2015</td>
<td>1700-2700</td>
</tr>
<tr>
<td>2016</td>
<td>1300-2300</td>
</tr>
<tr>
<td>2017</td>
<td>900-1900</td>
</tr>
</tbody>
</table>

- per year:
 - 29% above 7.500 MW
 - 26% above 6.500 MW
 - 23% above 5.500 MW
 - 19% above 4.500 MW
 - 15% above 3.500 MW
 - 11.4% Target Corridor
 - 9% up to 2.500 MW
 - 6% up to 2.000 MW
 - 0% up to 1.500 MW
 - -6% up to 1.000 MW

- per month:
 - 2.8%
 - 2.5%
 - 2.2%
 - 1.8%
 - 1.4%
 - 1.0%
 - 0.75%
 - 0.5%
 - 0%
 - -0.5%
Drivers and Targets of Germany’s Energy Policy
German RE Policies
Recent Development of PV in Germany
Integrating RE into the Energy System
Perspectives on the EEG Surcharge
Impacts and Perspectives
Electricity markets

Baseload futures market (delivery in 2013)
Grid expansion

Grid development plan 2012

Enhancing Flexibility

- Grids
 - Netzausbau für großräumigen Stromaus tausch (Baustein 1)
 - Flexible thermische Kraftwerke (2)
 - Reduktion „must-run“ (4)
 - Einspeisemanagement Wind & PV (6)

- Generation
 - Flexible Nachfrage durch Lastmanagement (3)

- Storage
 - Power-to-heat statt Einspeisemanagement (reduziert „must-run“) (5)
 - Pumpspeicher D/Alpen/Norwegen (5)
 - Power-to-Gas (5)

- Grid expansion
 - Flexible thermal power plants; feed-in management
 - Demand side/Load management
 - Power to heat
 - Pump storage
 - Power to Gas
Challenges

To move the transition forward successfully, we…

➢ … enable the electricity system to cope with large amounts of intermittent supply
➢ … increase flexibility of supply and demand
➢ … ensure supply security during times of low RE through management measures
➢ … address the medium-term challenge of electricity market design (e.g. closer-to-real-time trading to reduce forecasting error)
Drivers and Targets of Germany’s Energy Policy
German RE Policies
Recent Development of PV in Germany
Integrating RE into the Energy System
Perspectives on the EEG Surcharge
Impacts and Perspectives
Electricity consumer price

EEG costs in 2011: 3.53 ct/kWh

Source: BDEW
Development of the EEG Surcharge 2012 and Expectation for 2013

Entwicklung der reinen Umlage und der Steigerungsfaktoren 2012-2013

- Reine Förderkosten
- Rückgang Börsenstrompreis
- Marktprämie
- Industriepreis
- Liquiditätsreserve
- Nachholung aus 2012

5.21 ct/kWh

- Compensation 2012
- Exemption energy intensive industry
- Reduction of EEX prices
- Support costs

October 2012
Drivers and Targets of Germany‘s Energy Policy
German RE Policies
Recent Development of PV in Germany
Integrating RE into the Energy System
Perspectives on the EEG Surcharge
Impacts and Perspectives
Benefits of RE Deployment

Employment in Germany's renewable energy sources sector

- **Wind energy**
 - 2004: 7,300 jobs
 - 2007: 14,200 jobs
 - 2009: 160,500 jobs
 - 2011: 160,500 jobs

- **Biomass**
 - 2004: 7,600 jobs
 - 2007: 13,300 jobs
 - 2009: 339,500 jobs
 - 2011: 381,600 jobs

- **Solar energy**
 - 2004: 7,800 jobs
 - 2007: 14,500 jobs
 - 2009: 339,500 jobs
 - 2011: 381,600 jobs

- **Hydropower**
 - 2004: 9,500 jobs
 - 2007: 25,100 jobs
 - 2009: 101,100 jobs
 - 2011: 124,400 jobs

- **Geothermal energy, ambient heat**
 - 2004: 14,200 jobs
 - 2007: 13,300 jobs
 - 2009: 339,500 jobs
 - 2011: 381,600 jobs

- **Publicly assisted research and administration**
 - 2004: 1,800 jobs
 - 2007: 10,300 jobs
 - 2009: 7,500 jobs
 - 2011: 8,100 jobs

Increase: approx. 138%

Figures for 2010 and 2011 are provisional estimate; deviations in totals are due to rounding.

Source: O’Sullivan (DLR), Edler (DIW), Nieder (ZSW), Rüther (ZSW), Lehr (GWS), Peter (Prognos): "Bruttobeschäftigung durch erneuerbare Energien im Jahr 2011 – eine erste Abschätzung", as at: March 2012; interim report of research project „Kurz- und langfristige Auswirkungen des Ausbaus erneuerbarer Energien auf den deutschen Arbeitsmarkt“; image: BMU / Christoph Busse / transit
Benefits of RE Deployment

Trends in investments in renewable energy sources and their induced share in the electricity sector in Germany

Source: BMU-KI III 1 according to the Centre for Solar Energy and Hydrogen Research Baden-Wuerttemberg (ZSW); 2004 and 2005 estimated; image: BMU / Dieter Böhme; as at: July 2012; all figures provisional
Benefits of RE Deployment

Greenhouse gas emissions avoided via use of renewable energy sources in Germany 2011

Total greenhouse gases avoided 2011 (electricity/heat/transport):
approx. 130 million t CO$_2$ equiv., incl. greenhouse gases avoided due to RE-electricity with EEG remuneration:
approx. 70 million t CO$_2$ equiv.

GG: Greenhouse gas; RE: renewable energy; deviations in the totals are due to rounding; geothermal energy not presented due to negligible quantities of electricity produced;
Source: Federal Environment Agency (UBA) according to Working Group on Renewable Energy-Statistics (AGEE-Stat); image: H.G. Oed; as at: July 2012; all figures provisional
Conclusions

- Renewable energies have experienced a **strong growth**
- The reasons: **ambitious targets**, **efficient policies** and instruments, long-term planning security
- **Benefits** of renewable energies: **technological innovation**, climate protection, job creation, economic growth, avoided energy imports
- **Crucial next steps:**
 - cost efficiency, particularly regarding solar PV
 - market and grid integration of renewable energies
 - expand grid and storage capacities
 - sustainable and efficient use of bioenergy
 - cooperation among EU Member States and globally
Thank you for your attention!

More Information:
www.bmu.de/english
www.erneuerbare-energien.de/english
RE cost estimations – A sensitive and open debate

- Prognosis of costs for RE expansion vary in a wide range (development curve, climax - height and year)

- Differences due to different assumptions: scenarios for RE expansion, development of spot market price for electricity, ..

- Additional influences on RE costs and electricity price: „compensation approach” for energy-intensive industries, future Feed-in-Tariffs and instruments, Merit-Order-Effect
German RE Policies - Electricity

EEG costs in 2011: 3.53 ct/kWh

Cost components for one kilowatt-hour of electricity for household consumers

Source: BMU-KI III 1 according to Institut für neue Energien Teltow (IfnE) and Bundesverband der Energie- und Wasserwirtschaft e.V. (BDEW); Image: Deutsche Bundesbank; as at: July 2012; all figures provisional
Current Status – RE Contribution to Energy Mix

Renewable energy shares of total final energy consumption in Germany 2011

Total: 8,692 PJ

- **RES-share 2011:** 12.5 %
- **Biomass**: 8.4 %
- **Wind energy**: 2.0 %
- **Photovoltaics**: 0.8 %
- **Solar thermal and geothermal energy**: 0.5 %
- **Hydropower**: 0.7 %
- **Other energy resources (e.g. hard coal, lignite, mineral oils, natural gas) and nuclear energy**: 87.5 %

1) Source: Working Group on Energy Balances e.V. (AGEB); 2) Solid and liquid biomass, biogas, sewage and landfill gas, biogenic share of waste, biofuels; Source: BMU-KI III 1 based on Working Group on Renewable Energy-Statistics (AGEE-Stat) and Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), according to AGEB; RES: Renewable Energy Sources; deviations in the totals are due to rounding; 1 PJ = 10^{15} Joule; as at: July 2012; all figures provisional.
Merit order curve (with wind & PV)

- Lower price / lower profit contribution
- Demand
- Wind & PV
Merit order curve (conventional)

- **Price**
- **Demand**
- **Profit contribution**

The graph illustrates the merit order curve for conventional power generation, showing the relationship between production capacity and cost. Different energy sources are indicated by their respective colors and labels.